薛定谔方程 The Schrödinger Equation
薛定谔方程 The Schrödinger Equation
平均值 valeurs moyennes
位置和势能
位置的平均值
尽管使用波函数描述的粒子没有办法描述准确的位置,但我们可以描述其平均位置\(\langle\boldsymbol{r}\rangle=(\langle x\rangle,\langle y\rangle,\langle z\rangle)\)和偏差\(\Delta x=\sqrt{\left\langle x^2\right\rangle-\langle x\rangle^2}\)。为此,我们需要计算积分:
\[ \langle\vec{r}\rangle=\int \vec{r}|\psi(\vec{r}, t)|^2 \mathrm{~d}^3 r\Leftrightarrow \langle\vec{r}\rangle=\int \psi^*(\vec{r}, t) \vec{r} \psi(\vec{r}, t) \mathrm{d}^3 r \]
和偏差:
\[ \Delta x(t)=\left[\int_{-\infty}^{+\infty} x^2|\psi(r, t)|^2 d^3 r-\left(\int_{-\infty}^{+\infty} x|\psi(r, t)|^2 d^3 r\right)^2\right]^{1 / 2} \]
势能的平均值
如果粒子在力场中,可以计算平均力:
\[ \left\langle F_z\right\rangle(t)=\int_{-\infty}^{+\infty} F_z(r)|\psi(r, t)|^2 d^3 r \]
在场中,力是势的负梯度:\(\boldsymbol{F}(\boldsymbol{r})=-\vec{\nabla} V(\boldsymbol{r})\),在量子力学中更常使用:
\[ \langle V\rangle(t)=\int_{-\infty}^{+\infty} V(r)|\psi(r, t)|^2 d^3 r \]
动量和动能
动量的平均值
我们可以对波函数进行傅里叶变换,使用动量表示波函数:
\[ \widetilde{\psi}(\boldsymbol{p}, t)=\frac{1}{(2 \pi \hbar)^{3 / 2}} \int \psi(\boldsymbol{r}, t) e^{i \boldsymbol{p} \cdot \boldsymbol{r} / \hbar} d^3 \boldsymbol{r} \]
然后以相似的方式计算动能的平均值:
\[ \langle\vec{p}\rangle=\int \widetilde{\psi}^*(\vec{p}, t) \vec{p} \widetilde{\psi}(\vec{p}, t) \mathrm{d}^3 p \]
考虑其一个分量:
\[ \begin{aligned}\left\langle p_x\right\rangle(t)= & \frac{1}{(2 \pi \hbar)^3} \int p_x \int \psi^*\left(\boldsymbol{r}^{\prime}, t\right) e^{i \boldsymbol{p} \cdot \boldsymbol{r}^{\prime} / \hbar} d^3 \boldsymbol{r}^{\prime} \int \psi(\boldsymbol{r}, t) e^{-i \boldsymbol{p} \cdot \boldsymbol{r} / \hbar} d^3 \boldsymbol{r} d^3 \boldsymbol{p} \\= & \frac{1}{(2 \pi \hbar)^3} \iint \psi^*\left(\boldsymbol{r}^{\prime}, t\right) e^{i \boldsymbol{p} \cdot \boldsymbol{r}^{\prime} / \hbar} d^3 \boldsymbol{r}^{\prime} \int \psi(\boldsymbol{r}, t) p_x e^{-i \boldsymbol{p} \cdot \boldsymbol{r} / \hbar} d^3 \boldsymbol{r} d^3 \boldsymbol{p} \\= & \frac{1}{(2 \pi \hbar)^3} \iint \psi^*\left(\boldsymbol{r}^{\prime}, t\right) e^{i \boldsymbol{p} \cdot \boldsymbol{r}^{\prime} / \hbar} d^3 \boldsymbol{r}^{\prime} \int \psi(\boldsymbol{r}, t)\left(\frac{\hbar}{-i}\right) \\& \times\left(\frac{\partial}{\partial x} e^{-i \boldsymbol{p} \cdot \boldsymbol{r} / \hbar}\right) d^3 \boldsymbol{r} d^3 \boldsymbol{p}\\ =&\frac{1}{(2 \pi \hbar)^3} \iint \psi^*\left(\boldsymbol{r}^{\prime}, t\right)\left(\frac{\hbar}{i}\right)\left(\frac{\partial}{\partial x} \psi(\boldsymbol{r}, t)\right) d^3 \boldsymbol{r} \int e^{i \boldsymbol{p} \cdot\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right) / \hbar} d^3 \boldsymbol{p} d^3 \boldsymbol{r}^{\prime} \\ =&\iint \psi^*\left(\boldsymbol{r}^{\prime}, t\right)\left(\frac{\hbar}{i}\right)\left(\frac{\partial}{\partial x} \psi(\boldsymbol{r}, t)\right) d^3 \boldsymbol{r} \delta\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right) d^3 \boldsymbol{r}^{\prime} \\ =&\int \psi^*(\boldsymbol{r}, t)\left(\frac{\hbar}{i} \frac{\partial}{\partial x} \psi(\boldsymbol{r}, t)\right) d^3 \boldsymbol{r} \end{aligned} \]
考虑所有方向,则有:
\[ \langle\boldsymbol{p}\rangle(t)=\int \psi^*(\boldsymbol{r}, t)\left(\frac{\hbar}{i} \vec{\nabla}_r \psi(\boldsymbol{r}, t)\right) d^3 \boldsymbol{r} \]
动能平均值
进一步得到平均动能:
\[ \langle K\rangle(t)=\left\langle\frac{p^2}{2 m}\right\rangle=-\frac{\hbar^2}{2 m} \int \psi^*(\boldsymbol{r}, t)\left(\nabla_r^2 \psi(\boldsymbol{r}, t)\right) d^3 \boldsymbol{r} \]
动能算符和动量算符
- 动量算符
opérateur impulsion
:\(\overrightarrow{\hat{p}} \triangleq \frac{\hbar}{i} \vec{\nabla}_r\)。 - 动能算符
Opérateur énergie cinétique
:\(\widehat{T}=\frac{\widehat{p}^2}{2 m}=-\frac{\hbar^2}{2 m} \nabla_r^2\)
平均总能量
使用\(\varepsilon_{\boldsymbol{p}}=\hbar \omega_{\boldsymbol{p}}\)计算总能量:
\[ \begin{aligned} \langle H\rangle(t)= & \int \hbar \omega_{\boldsymbol{p}}|\widetilde{\psi}(\boldsymbol{p}, t)|^2 d^3 \boldsymbol{p} \\ = & \int \widetilde{\psi}^*(\boldsymbol{p}) e^{i \omega_{\boldsymbol{p}} t} \hbar \omega_{\boldsymbol{p}} \widetilde{\psi}(\boldsymbol{p}) e^{-i \omega_{\boldsymbol{p}} t} d^3 \boldsymbol{p} \\ = & \int \widetilde{\psi}^*(\boldsymbol{p}) e^{i \omega_{\boldsymbol{p}} t}(i \hbar) \frac{\partial}{\partial t}\left(\widetilde{\psi}(\boldsymbol{p}) e^{-i \omega_{\boldsymbol{p}} t}\right) d^3 \boldsymbol{p} \\ = & \int \frac{1}{(2 \pi \hbar)^3} \int \psi^*\left(\boldsymbol{r}^{\prime}, t\right) e^{i \boldsymbol{p} \cdot \boldsymbol{r}^{\prime} / \hbar} d^3 \boldsymbol{r}^{\prime}(i \hbar) \frac{\partial}{\partial t} \\ & \times\left(\int \psi(\boldsymbol{r}, t) e^{-i \boldsymbol{p} \cdot \boldsymbol{r} / \hbar} d^3 \boldsymbol{r}\right) d^3 \boldsymbol{p} \\ = & \int \psi^*(\boldsymbol{r}, t)(i \hbar) \frac{\partial}{\partial t} \psi(\boldsymbol{r}, t) d^3 \boldsymbol{r} \end{aligned} \]
薛定谔方程 The Schrödinger Equation
演化方程:薛定谔方程
在之前的计算中,我们同时计算了平均动能,平均势能和平均总能量。由此可以获得一个恒等式:
\[ \begin{aligned}\int \psi^*(\boldsymbol{r}, t)(i \hbar) \frac{\partial}{\partial t} \psi(\boldsymbol{r}, t) d^3 \boldsymbol{r}= & -\frac{\hbar^2}{2 m} \int \psi^*(\boldsymbol{r}, t)\left(\nabla_r^2 \psi(\boldsymbol{r}, t)\right) d^3 \boldsymbol{r} +\int V(\boldsymbol{r})|\psi(\boldsymbol{r}, t)|^2 d^3 \boldsymbol{r}\end{aligned} \]
在任何一个体积\(\delta V\)中,由:
\[ \int_{\delta V} \psi^*(\boldsymbol{r}, t)\left[i \hbar \frac{\partial}{\partial t} \psi(\boldsymbol{r}, t)+\frac{\hbar^2}{2 m} \nabla_r^2 \psi(\boldsymbol{r}, t)-V(\boldsymbol{r}) \psi(\boldsymbol{r}, t)\right] d^3 \boldsymbol{r}=0 \]
如果这个积分对于以任何位置r为中心的任何给定体积\(δV\)为零,那么被积函数必须为零。
\[ -\frac{\hbar^2}{2 m} \nabla_r^2 \psi(\boldsymbol{r}, t)+V(\boldsymbol{r}) \psi(\boldsymbol{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\boldsymbol{r}, t) \]
这个偏微分方程将波函数的时间导数与其空间结构和作用在粒子上的势的时间导数联系起来。因此这是一个演化方程,即薛定谔方程。
这个方程不包括时间的二阶导,所以并非传播方程。
自由粒子的解?
对于自由粒子,其势能为0:
\[ -\frac{\hbar^2}{2 m} \nabla_r^2 \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) \]
从而可以获得一个解:
\[ \psi(\vec{r}, t)=\frac{1}{\sqrt{V}} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \]
密顿量、动量算符和势算符the Hamiltonian, the momentum and the potential operators
势算符
\[ \widehat{V}(\boldsymbol{r}) \psi(\boldsymbol{r}, t)=V(\boldsymbol{r}) \times \psi(\boldsymbol{r}, t) \]
动量算符
\[ \widehat{\boldsymbol{p}} \equiv-i \hbar \vec{\nabla}_r \]
哈密顿算符
\[ \widehat{H} \equiv \frac{1}{2 m} \widehat{\boldsymbol{p}}^2+\widehat{V}(\boldsymbol{r}) \]
- 即:
\[ \widehat{H}=-\frac{\hbar^2}{2 m} \nabla_r^2+\widehat{V}(\boldsymbol{r}) \]
薛定谔-哈密顿方程
\[ \widehat{H} \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) \]
概率流 Courant de probabilité
概率密度随时间的变化
考虑概率密度对时间的导数:
\[ \begin{aligned} \frac{\partial \rho(\boldsymbol{r}, t)}{\partial t} & =\frac{\partial}{\partial t}\left[\psi^*(\boldsymbol{r}, t) \psi(\boldsymbol{r}, t)\right] \\ & =\psi^*(\boldsymbol{r}, t) \frac{i \hbar}{2 m} \nabla_r^2 \psi(\boldsymbol{r}, t)-\psi(\boldsymbol{r}, t) \frac{i \hbar}{2 m} \nabla_r^2 \psi^*(\boldsymbol{r}, t) \end{aligned} \]
其中,根据薛定谔方程:
\[ \begin{align*}&\frac{\partial}{\partial t} \psi(\boldsymbol{r}, t)=\frac{i \hbar}{2 m} \nabla_r^2 \psi(\boldsymbol{r}, t)-\frac{i}{\hbar} V(\boldsymbol{r}) \psi(\boldsymbol{r}, t)\\&\frac{\partial}{\partial t} \psi^*(\boldsymbol{r}, t)=-\frac{i \hbar}{2 m} \nabla_r^2 \psi^*(\boldsymbol{r}, t)+\frac{i}{\hbar} V(\boldsymbol{r}) \psi^*(\boldsymbol{r}, t)\end{align*} \]
代入,得到:
\[ \frac{\partial \rho(\boldsymbol{r}, t)}{\partial t}=\frac{i \hbar}{2 m} \vec{\nabla}_r \cdot\left(\psi^*(\boldsymbol{r}, t) \vec{\nabla}_r \psi(\boldsymbol{r}, t)-\psi(\boldsymbol{r}, t) \vec{\nabla}_r \psi^*(\boldsymbol{r}, t)\right) \]
或者使用算子替代:
\[ \frac{\partial \rho(\boldsymbol{r}, t)}{\partial t}=-\vec{\nabla}_r \cdot\left[\psi^*(\boldsymbol{r}, t) \frac{\widehat{\boldsymbol{p}}}{2 m} \psi(\boldsymbol{r}, t)+\psi(\boldsymbol{r}, t)\left(\frac{\widehat{\boldsymbol{p}}}{2 m} \psi(\boldsymbol{r}, t)\right)^*\right] \]
概率流
回想公式:
\[ \vec{\nabla}_{\boldsymbol{r}} \cdot \boldsymbol{j}_q(\boldsymbol{r}, t)+\frac{\partial \rho_q(\boldsymbol{r}, t)}{\partial t}=0 \]
可以发现这两个公式高度相似,我们可以用相同的方法定义概率流Courant de probabilité:
\[ \frac{\partial \rho(\vec{r}, t)}{\partial t}=-\vec{\nabla}_r \cdot \vec{j}(\vec{r}, t) \]
\[ \begin{aligned}\boldsymbol{j}(\boldsymbol{r}, t) & =\frac{i \hbar}{2 m}\left(\psi(\boldsymbol{r}, t) \vec{\nabla}_r \psi^*(\boldsymbol{r}, t)-\psi^*(\boldsymbol{r}, t) \vec{\nabla}_r \psi(\boldsymbol{r}, t)\right) \\& =\operatorname{Re}\left[\psi^*(\boldsymbol{r}, t) \frac{\widehat{p}}{m} \psi(\boldsymbol{r}, t)\right]=\frac{1}{m} \operatorname{Re}\left[\psi^*(\vec{r}, t)\left(\frac{\hbar}{i} \vec{\nabla}_r \psi(\vec{r}, t)\right)\right]\end{aligned} \]
自由粒子的概率流
代入自由粒子的一个解:\(\psi(\vec{r}, t)=\frac{1}{\sqrt{V}} e^{i(\vec{k} \cdot \vec{r}-\omega t)}\):
\[ \vec{j}(\vec{r}, t)=\frac{\hbar}{m} \operatorname{Re}\left[\psi^*(\vec{r}, t) \vec{k} \psi(\vec{r}, t)\right]=\frac{\hbar}{m} \operatorname{Re}\left[\vec{k}|\psi(\vec{r}, t)|^2\right] \]
得到:
\[ j_x=\frac{i \hbar}{2 m}\left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d} x} \varphi^*(x)-\varphi^*(x) \frac{\mathrm{d}}{\mathrm{d} x} \varphi(x)\right] \]
\[ \vec{j}(\vec{r}, t)=\frac{\vec{p}}{m}|\psi(\vec{r}, t)|^2=\frac{\vec{p}}{m} \rho(\vec{r}, t) \]
以势垒和势阶为例 barrière de potentiel
薛定谔方程的解 Résolution de l’équation de Schrödinger
薛定谔方程:
\[ \widehat{H} \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) \]
分离变量\(\psi(\vec{r}, t)=\varphi(\vec{r}) \chi(t)\):
\[ \widehat{H} (\varphi(\vec{r}) \chi(t))=i \hbar \frac{\partial}{\partial t} \varphi(\vec{r}) \chi(t) \]
\[ \frac{1}{\varphi(\vec{r})}\left(-\frac{\hbar^2}{2 m} \nabla_r^2 \varphi(\vec{r})+V(\vec{r}) \varphi(\vec{r})\right)=i \hbar \frac{1}{\chi(t)} \frac{\mathrm{d}}{\mathrm{d} t} \chi(t)=E \]
特征值方程 Équation aux valeurs propres
得到特征值方程 :
\[ \widehat{H} \varphi_n(\vec{r})=E_n \varphi_n(\vec{r}) \]
- \(E_n:\) valeurs propres
- \(\varphi_n(\vec{r})\) : fonctions propres
薛定谔方程的解
从而得到薛定谔方程的解:
\[ \begin{align*}&\psi_n(\vec{r}, t)=\varphi_n(\vec{r}) e^{-i E_n t / \hbar}\end{align*} \]
势垒-以以下题目为例
在经典物理中:
- 如果 \(E>V_0\), 物质会穿过势垒
- 如果 \(0<E<V_0\), 物质会被阻拦,并且反射
0 < E < V_0的情况
求解薛定谔方程
\(\varphi(x)\) 满足特征值方程:
\[ -\frac{\hbar^2}{2m}\frac{d^2\varphi}{dx^2} = (E-V(x))\varphi(x) \]
在区域1和区域3, \(V(x) = 0\),特征方程可以写作:
\[ -\frac{\hbar^2}{2m}\frac{d^2\varphi(x)}{dx^2} = E\varphi(x)\Leftrightarrow\frac{d^2\varphi(x)}{dx^2}+\frac{2mE}{\hbar^2}\varphi(x) = 0 \]
求解微分方程可以得到:
\[ \left\{\begin{aligned}&\varphi_1(x) = Ae^{ikx}+Be^{i-kx}\\&\varphi_3(x) = F'e^{ikx}+G'e^{i-kx}= Fe^{ik(x-a)}+Ge^{i-k(x-a)}\end{aligned}\right. \]
在区域2, \(V(x) = V_0\),特征方程可以写作:
\[ -\frac{\hbar^2}{2m}\frac{d^2\varphi(x)}{dx^2} = (E-V_0)\varphi(x)\Leftrightarrow\frac{d^2\varphi(x)}{dx^2}-\frac{2m(V_0-E)}{\hbar^2}\varphi(x) = 0 \]
求解微分方程可以得到:
\[ \varphi_2(x) = Ce^{\beta x}+De^{-\beta x} \]
从而得到题目要求的结果
计算概率流
概率流可以由以下公式计算,我们使用第二个公式计算:
\[ \vec J = \frac{\hbar}{2mi}[\varphi^*\frac{d\varphi}{dx}-\varphi\frac{d\varphi^*}{dx}] = \frac 1m \mathcal{Re}[\varphi^*(x)\frac \hbar i\frac{d\varphi}{dx}] \]
在区域1中:
\[ \begin{align*}\vec J_1=& \frac 1m \mathcal{Re}[\varphi_1^*(x)\frac \hbar i\frac{d\varphi_1}{dx}] \\=& \frac 1m\mathcal{Re}[(A^*e^{-ikx}+B^*e^{ikx})\frac \hbar i(ikAe^{ikx}-ikBe^{i-kx})] \\=&\frac{\hbar k}{m}\mathcal{Re}[(A^*e^{-ikx}+B^*e^{ikx})(Ae^{ikx}+Be^{-ikx})]\\=&\frac{\hbar k}{m}\mathcal{Re}[|A|^2+|B|^2+AB^*e^{2ikx}-A^*Be^{-2ikx}]\end{align*} \]
后两项 \(AB^*e^{2ikx}-A^*Be^{-2ikx}\) 是满足形式 \(z-z^* = 2i\mathcal{Im}(z)\in i\mathbb{R}\),属于纯虚数:
\[ \vec J_1 = \frac{\hbar k}{m}|A|^2\vec e_x-\frac{\hbar k}{m}|B|^2\vec e_x \]
第一项是入射流
le courant incident
第二项是反射流le courant réfféchi
同样可以计算区域 3:
\[ \vec J_3 = \frac{\hbar k}{m}|F|^2\vec e_x-\frac{\hbar k}{m}|G|^2\vec e_x \]
第一项是投射项
le courant transmis
,第二项是不可能的,因为前方没有更多障碍。 所以 \(G = 0\) 。
考虑边界条件,计算透射系数和反射系数
考虑连续性条件: - 在\(x = 0\)处:
\[ \left\{\begin{aligned}&\varphi_1(x = 0) = \varphi_2(x = 0)\\&\frac{d\varphi_1(x)}{dx}(x = 0)=\frac{d\varphi_2(x)}{dx}(x = 0)\end{aligned}\right. \]
- 在\(x = a\)处:
\[ \left\{\begin{aligned}&\varphi_2(x = a) = \varphi_3(x = a)\\&\frac{d\varphi_2(x)}{dx}(x = a)=\frac{d\varphi_3(x)}{dx}(x = a)\end{aligned}\right. \]
我们有 5 个参数 \(A,B,C,D,F\) , 4 个方程:
\[ \left\{\begin{aligned}&A+B = C+D\\&ikA-ikB = \beta(C-D)\\&Ce^{\beta x}+De^{-\beta x} = F\\&\beta Ce^{\beta a}-\beta De^{- \beta a} = ikF\end{aligned}\right. \Leftrightarrow\left\{\begin{aligned}&-B+C+D = A\\&ikB+\beta C-\beta D = ikA\\&Ce^{\beta x}+De^{-\beta x} - F = 0\\&\beta Ce^{\beta a}-\beta De^{- \beta a} -ikF =0 \end{aligned}\right. \]
求解方程得到:
\[ \left\{\begin{aligned}&A = \frac 1{4ik\beta}[(\beta + ih)^2e^{-\beta a}-(\beta - ih)^2e^{\beta a}]F\\&B = \frac{2(h^2+\beta^2)sinh(\beta a)}{4ih\beta}F\\\end{aligned}\right. \]
由此求出投射系数和反射系数 \(\tau=F / A\) et \(\rho=B/A\)
\[ \left\{\begin{aligned}&\tau = \frac{hik\beta}{(\beta + ih)^2e^{-\beta a}-(\beta - ih)^2e^{\beta a}}\\&\rho = \frac{2(h^2+\beta^2)sinh(\beta a)}{(\beta + ih)^2e^{-\beta a}-(\beta - ih)^2e^{\beta a}}\\\end{aligned}\right. \]
反射率,透射率
计算反射率和投射率 \(R = |\rho|^2, T = |\tau|^2\)
\[ \left\{\begin{aligned}&R = \frac{\frac{(k^2+\beta^2)^2}{4k^2\beta^2}sinh^2(\beta a)}{1+\frac{(k^2+\beta^2)^2}{4k^2\beta^2}sinh^2(\beta a)}\\&T = \frac{1}{1+\frac{(k^2+\beta^2)^2}{4k^2\beta^2}sinh^2(\beta a)}\end{aligned}\right. \]
我们可以发现 \(R+T = 1\)
\(\sigma = \frac{2mV_0a^2}{\hbar^2}, \varepsilon = \frac E{V_0}\)
\[ \left\{\begin{aligned}&\beta a = \sqrt{\frac{2m(V_0-E)}{\hbar^2}a^2} = \sqrt{\frac{2mV_0(1-\varepsilon)a^2}{\hbar^2}} = \sqrt{\sigma(1-\varepsilon)}\\&\frac{4k^2\beta^2}{(k^2+\beta^2)^2} =\frac{4\frac{2mE}{\hbar^2}\frac{2m(V_0-E)}{\hbar^2}}{(\frac{2mE}{\hbar^2}+\frac{2m(V_0-E)}{\hbar^2})^2}=4\varepsilon(1-\varepsilon)\end{aligned}\right. \]
- 将两项替换进去得到
\[ \left\{\begin{aligned}&R = \frac{\frac{1}{4\varepsilon(1-\varepsilon)}sinh^2(\sqrt{\sigma(1-\varepsilon)})}{1+\frac{1}{4\varepsilon(1-\varepsilon)}sinh^2(\sqrt{\sigma(1-\varepsilon)})}\\&T = \frac{1}{1+\frac{1}{4\varepsilon(1-\varepsilon)}sinh^2(\sqrt{\sigma(1-\varepsilon)})}\end{aligned}\right. \]
E > V0 的情况
重新求解
重新求解这种情况下的波函数:
- \(\varphi_1\)et\(\varphi_3\) 不变:
\[ \left\{\begin{aligned}&\varphi_1(x) = Ae^{ikx}+Be^{i-kx}\\&\varphi_3(x) = Fe^{ik(x-a)}\end{aligned}\right. \]
对于\(\varphi_2\)
\[ -\frac{\hbar^2}{2m}\frac{d^2\varphi(x)}{dx^2} = (E-V_0)\varphi(x)\Leftrightarrow\frac{d^2\varphi(x)}{dx^2}+\frac{2m(E-V_0)}{\hbar^2}\varphi(x) = 0 \]
微分方程的解为:
\[ \varphi_2(x) = Ce^{ik'x}+De^{-ik'x} \]
所以只需要替换 \(\beta\) 为\(ik'\), 但是需要注意 \(sinh(\beta a)\)
\[ sinh(\beta a) = \frac{exp(\beta a)-\exp(-\beta a)}{2}\stackrel{\beta\rightarrow ik'}{\longrightarrow}\frac{exp(ik' a)-\exp(-ik' a)}{2} = isin(k'a) \]
所以R et T:
\[ \left\{\begin{aligned}&R = \frac{\frac{1}{4\varepsilon(\varepsilon-1)}sin^2(\sqrt{\sigma(\varepsilon-1)})}{1+\frac{1}{4\varepsilon(\varepsilon-1)}sin^2(\sqrt{\sigma(\varepsilon-1)})}\\&T = \frac{1}{1+\frac{1}{4\varepsilon(\varepsilon-1)}sin^2(\sqrt{\sigma(\varepsilon-1)})}\end{aligned}\right. \]
简单考虑势阶的情况
\(E<V_0\):
\[ \left\{\begin{aligned}&\varphi_1(x) = Ae^{ikx}+Be^{i-kx}\\&\varphi_2(x) = Ce^{\beta x}+De^{-\beta x}\end{aligned}\right. \]
第一项如果存在,则无穷大,所以 \(C = 0\), 第二项与延迟retard有关,不能消去
在 \(x = 0\) 处连续:
\[ \left\{\begin{aligned}&\varphi_1(x = 0) = \varphi_2(x = 0)\\&\frac{d\varphi_1(x)}{dx}(x = 0)=\frac{d\varphi_2(x)}{dx}(x = 0)\end{aligned}\right. \]
R et T
\[ R =\left|\frac{B}{A}\right|^2 \quad T =\left|\frac{D}{A}\right|^2 \]
\(E>V_0\):
\[ \left\{\begin{aligned}&\varphi_1(x) = Ae^{ikx}+Be^{i-kx}\\&\varphi_2(x) = Ce^{ik' x}\end{aligned}\right. \]