Capture_5: Mass And Energy Analyse of Control Volumes 体积控制系统质量、能量分析

Summary

Conservation of mass principal

\[ \begin{cases}m_{\text {in }}-m_{\text {out }}=\Delta m_{system} & \\ \dot{m}_{\text {in }}-\dot{m}_{\text {out }}=d m_{system} / d t \end{cases} \]

  • a cross section: 横截面

mass flow rate 质量流速度

amount of mass flowing through a cross section par unit time 单位时间穿过某横截面的质量

$$ =v A

$$

其中:

  • A:area normal

volume flow rate 体积流速度

\[ \dot{U}=v A=\dot{m} / p \]

flow work 功流量

\[ w_{\text {flow }}=P \cdot v \]

Total Energy of a flowing fluid 流体总能量:

$$ =h+k e+p e=h++g z

$$

Hate of energy trasport 能量转移速率\(\dot{m} \theta\)

\[ when\ k_{e}=p_e=0:\left\{\begin{array}{l}E_{\text {mass }}=m h \\ \dot{E} _\text { mass }=\dot{m} h .\end{array}\right. \]

※Steady flow 定常流动

Steady flow 定常流动

\(\left\{\begin{array}{l} \Sigma_{\text {in }} \dot{m}=\Sigma_{\text {out }} \dot{m} \\ \dot{Q}-\dot{w}=\Sigma_{\text {out}} \dot{m}\left(h+\frac{v^{2}}{2}+g z\right)-\Sigma_{\text {in }} \dot{m}\left(h+\frac{v^{2}}{2}+g z\right) \end{array}\right.\)

Single Steady flow 单定常流动

\(\left\{\begin{array}{l} m_{1}=m_{2} \rightarrow \frac{1}{\nu_{1}} V_{1} A_{1}=\frac{1}{\nu_{2}} \cdot V_{2} A_{2} \\ \left.\dot{Q}-\dot{W}=\dot{m}\left[h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g ( z_{2}-z_{1}\right)\right] \end{array}\right.\)

unsteady flow 非定常流动\(\Rightarrow\)uniform-flow-process 均匀流动过程

\[ \begin{align}\left\{\begin{aligned}& m_{in}-m_{out} = \Delta m_{system} \\ &Q-W = \sum_{out}mh_{out}-\sum_{in}h_{in}+(m_2u_2-m_1u_1)\end{aligned}\right.\end{align} \]