Chapter 2 energy, energy transfer, general energy analysis
Chapter 2 energy, energy transfer, general energy analysis
本章介绍了能量、能量传递和一般能量分析的概念。主要讨论了能量的形式,包括总能量、动能、势能,以及能量关系。此外,还介绍了封闭系统能量、热传递、做功和热力学第一定律等概念。最后,介绍了能量转换效率的计算方法。
Forms of Energy
total energy
\(E, e=\frac{E}{m}\)
- E con be assigned a value n of zeros \(E=0\)
- macroscopic: Kinetic, potential
- microscopic: internal energy
Kinetic energy (KE)
- \(K E=\frac{1}{2} m v^{2} ; \quad k e=\frac{1}{2} v^{2}\)
Potential energy (PE)
- \(P E=m g z, \quad p e=g z\)
能量关系
$$
\[\begin{aligned} & E=U+K E+P E=U+\frac{1}{2} m V^{2}+m g z \\ & e=u+k e+p e=u+\frac{1}{2} V^{2}+g z \end{aligned}\]$$
Stationary system
\(\Delta E=\Delta U\)
flow rate 流
volume flow rate 体积流
$$
\[\begin{aligned} & \dot{V}= A_{c} \cdot V_{\text {avg }} \end{aligned}\]$$
- \(A_c\) 横截面积
- \(V_{avg}\) 平均速率
mass flow rate 质量流
\[ \dot{m}=\rho \cdot \dot{v} \]
energy flow rate 能量流
$$
= e
$$
封闭系统能量
The only two forms of energy interactions associated with a closed system are
- heat transfer
- work
热传递
Heat 热
form of energie that is transferred heat between 2 system by virtue of a temperature difference.
$$
q=, Q={t{1}}^{t_{2}} d t
$$
adiabatic process 绝热过程
\[ Q=0 \]
热的传递形式
- Conduction 热传导
- Convention 热对流
- Radiation 热辐射
做功
功和功率
- work \(w=\frac{w}{m} \quad(k J / \mathrm{kg})\)
- power \(p=\dot{w}=\frac{w}{\tau}\)
formal sign convention 符号约定
- heat transfer to a system and work dons by a system are pasitif
Path functions point functions 路径函数和点函数
- Path functions = inexact different \(\delta\)
- point functions: exact different \(d\) \(\begin{aligned} & \int_{1}^{2} d v=\Delta v \\ & \int_{1}^{2} \delta w=w_{12} \left(not \Delta w\right) \end{aligned}\)
work of other form 其他形式的功
Electrical Work
- \(W_{e}=\int u I d t\)
Mechanical Work
- \(W_{i m}=\int_{2}^{1} F d s\)
Shaft (转动) Work
- \(W_{S}=2\pi nT\)
Spring Work 弹簧功
- \(W_{\text {spring }}=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right)\)
热力学第一定律 first law
Energy Balance
- \(E_{in} - E_{out} =\Delta E\)
Simple Compressible System
- \(\Delta E=\Delta U+\Delta K E+\Delta P E\)
- \(\begin{aligned} & \Delta U=m\left(u_{2}-u_{1}\right) \\ & \Delta K E=\frac{1}{2} m\left(U_{2}^{2}-V_{1}^{2}\right) \\ & \Delta P E=m g\left(z_{2}-z_{1}\right) \end{aligned}\)
Stationary system
- \(\triangle P E=\triangle K E=0\)
- \(\Delta E=\Delta U\)
mechanisms (机理)
- Heat Transfer Q
- Work Transfer W
- Mass Flow
\(\begin{aligned} & \Leftrightarrow \Delta E_{\text {system }}=Q+W+\Delta E_{\text {mass }} \\ & \Leftrightarrow d E_\text { system }=\delta Q+\delta W+d E_\text { mass } \\ & \Leftrightarrow d E / d t=\dot{Q}+\dot{W}+\dot{E}_{\text {mass }} \end{aligned}\)
isolated:
- \(\Delta U=\Delta Q+\Delta W\)
能量转换效率
- \(efficiency=\frac{Desired \ output}{ Requited \ input }\)
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Raphael's Home!