期望和方差-探究\(\sigma_x\)\(\sigma_p\)的关系-定域性的例子

借助均值,同时应用随时间演变的薛定谔方程

  • \(\partial_t \widehat{A}=0\),证明:

    \[ \begin{align} i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\langle A\rangle=\langle[\widehat{A}, \widehat{H}]\rangle\end{align} \]

    • 均值的定义:\(\langle A\rangle=\langle\psi(t)|\widehat{A}| \psi(t)\rangle\)
    • 计算方程左侧的导数:

    \[ i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\langle A\rangle=i \hbar\left(\frac{\mathrm{d}}{\mathrm{d} t}\langle\psi(t)|\right) \widehat{A}|\psi(t)\rangle+i \hbar\langle\psi(t)| \widehat{A}\left(\frac{\mathrm{d}}{\mathrm{d} t}|\psi(t)\rangle\right)+i \hbar\left\langle\psi(t)\left|\left(\frac{\mathrm{d}}{\mathrm{d} t} \widehat{A}\right)\right| \psi(t)\right\rangle=i \hbar\left(\frac{\mathrm{d}}{\mathrm{d} t}\langle\psi(t)|\right) \widehat{A}|\psi(t)\rangle+i \hbar\langle\psi(t)| \widehat{A}\left(\frac{\mathrm{d}}{\mathrm{d} t}|\psi(t)\rangle\right) \]

    • 借助体系随时间演变的薛定谔方程(第六定理):

    \[ i \hbar \frac{\mathrm{d}}{\mathrm{d} t}|\psi(t)\rangle=\widehat{H}(t)|\psi(t)\rangle \]

    • 由于\(\hat H\)是厄米算子,有:

    \[ \langle\psi(t)| \widehat{H}=-i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\langle\psi(t)| \]

    • 等式的右侧:

    \[ \begin{aligned}\langle[\widehat A, \widehat H]\rangle& = \langle\psi(t)|\widehat A\widehat H|\psi(t)\rangle - \langle\psi(t)|\widehat H\widehat A|\psi(t)\rangle\\& = i \hbar\left(\frac{\mathrm{d}}{\mathrm{d} t}\langle\psi(t)|\right) \widehat{A}|\psi(t)\rangle+i \hbar\langle\psi(t)| \widehat{A}\left(\frac{\mathrm{d}}{\mathrm{d} t}|\psi(t)\rangle\right) \end{aligned} \]

    • 由此可见等式左侧与右侧相等。
  • 继续应用\((1)\)进行一些计算:

    • \(i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\langle p\rangle=\langle[\widehat{p}, \widehat{H}]\rangle\),在自由例子情况下,\(\widehat H = \frac{\hat p^2}{2m}\),故有:
      • \(i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\langle p\rangle=\left\langle\left[\widehat{p}, \frac{\widehat{p}^2}{2 m}\right]\right\rangle=0\)

与标准差相关,探究\(x\)\(p\)方差

定义\(x\)\(p\)的方差为标准差的平方:

\[ \begin{aligned}& \sigma_x^2(t)=\left\langle x^2\right\rangle-\langle x\rangle^2=\left\langle(\widehat{x}-\langle x\rangle)^2\right\rangle, \\& \sigma_p^2(t)=\left\langle p^2\right\rangle-\langle p\rangle^2=\left\langle(\widehat{p}-\langle p\rangle)^2\right\rangle .\end{aligned} \]

研究以下表示:

  • \(i \hbar \frac{\mathrm{d}}{\mathrm{d} t} \sigma_p^2\)

    \[ \begin{aligned} i \hbar \frac{\mathrm{d}}{\mathrm{d} t} \sigma_p^2 & =i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\left(\left\langle p^2\right\rangle-\langle p\rangle^2\right)=i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\left\langle p^2\right\rangle-i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\left(\langle p\rangle^2\right)=i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\left\langle p^2\right\rangle-2 i \hbar\langle p\rangle \frac{\mathrm{d}}{\mathrm{d} t}\langle p\rangle \\ & \left.=\left\langle\left[\widehat{p}^2, \widehat{H}\right]\right\rangle-2\langle p\rangle\langle\widehat{p}, \widehat{H}]\right\rangle=\left\langle\left[\widehat{p}^2, \frac{\widehat{p}^2}{2 m}\right]\right\rangle-2\langle p\rangle\left\langle\left[\widehat{p}, \frac{\widehat{p}^2}{2 m}\right]\right\rangle = 0 \end{aligned} \]

  • \(i \hbar \frac{\mathrm{d}}{\mathrm{d} t} \sigma_x^2\)

    \[ \begin{aligned} i \hbar \frac{\mathrm{d}}{\mathrm{d} t} \sigma_x^2 & =i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\left(\left\langle x^2\right\rangle-\langle x\rangle^2\right)=i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\left\langle x^2\right\rangle-i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\left(\langle x\rangle^2\right)=i \hbar \frac{\mathrm{d}}{\mathrm{d} t}\left\langle x^2\right\rangle-2 i \hbar\langle x\rangle \frac{\mathrm{d}}{\mathrm{d} t}\langle x\rangle \\ & =\left\langle\left[\widehat{x}^2, \widehat{H}\right]\right\rangle-2\langle x\rangle\langle[\widehat{x}, \widehat{H}]\rangle=\left\langle\left[\widehat{x}^2, \frac{\widehat{p}^2}{2 m}\right]\right\rangle-2\langle x\rangle\left\langle\left[\widehat{x}, \frac{\widehat{p}^2}{2 m}\right]\right\rangle \end{aligned} \]

    应用\([\widehat{A}, \widehat{B} \widehat{C}]=\widehat{B}[\widehat{A}, \widehat{C}]+[\widehat{A}, \widehat{B}] \widehat{C},[\widehat{A} \widehat{B}, \widehat{C}]=\widehat{A}[\widehat{B}, \widehat{C}]+[\widehat{A}, \widehat{C}] \widehat{B}\)有:

    • \(\left[\widehat{x}^2, \widehat{p}^2\right]=\widehat{x}\left[\widehat{x}, \widehat{p}^2\right]+\left[\widehat{x}, \widehat{p}^2\right] \widehat{x}=2 i \hbar \widehat{x} \widehat{p}+2 i \hbar \widehat{p} \widehat{x}=2 i \hbar(\widehat{x} \widehat{p}+\widehat{p} \widehat{x})\)
    • \(\left[\widehat{x}, \widehat{p}^2\right]=\widehat{p}[\widehat{x}, \widehat{p}]+[\widehat{x}, \widehat{p}] \widehat{p}=i \hbar \widehat{p}+i \hbar \widehat{p}=2 i \hbar \widehat{p}\)

    代入得:

    \[ i \hbar \frac{\mathrm{d}}{\mathrm{d} t} \sigma_x^2=\frac{i \hbar}{m}(\langle x p+p x\rangle-2\langle x\rangle\langle p\rangle) \]

    最终没有\(\hat \quad\)可能是因为它们代表的是位置和动量的期望值,而不是算符本身。当我们谈论期望值时,通常会省略算符上的帽子。

  • \(i \hbar \frac{\mathrm{d}^2}{\mathrm{~d} t^2} \sigma_x^2\)

    \[ \begin{aligned}i \hbar \frac{\mathrm{d}^2}{\mathrm{~d} t^2} \sigma_x^2 & =\frac{i \hbar}{m} \frac{\mathrm{d}}{\mathrm{d} t}(\langle x p+p x\rangle-2\langle x\rangle\langle p\rangle)=\frac{i \hbar}{m} \frac{\mathrm{d}}{\mathrm{d} t}\langle x p+p x\rangle-2\langle x\rangle \frac{i \hbar}{m} \frac{\mathrm{d}}{\mathrm{d} t}\langle p\rangle-2\langle p\rangle \frac{i \hbar}{m} \frac{\mathrm{d}}{\mathrm{d} t}\langle x\rangle \\& \left.=\frac{1}{m}\langle[\widehat{x} \widehat{p}+\widehat{p} \widehat{x}, \widehat{H}]\rangle-\frac{2\langle x\rangle}{m}\langle\widehat{p}, \widehat{H}]\right\rangle-\frac{2\langle p\rangle}{m}\langle[\widehat{x}, \widehat{H}]\rangle \\& =\frac{1}{m}\left\langle\left[\widehat{x} \widehat{p}+\widehat{p} \widehat{x}, \frac{\widehat{p}^2}{2 m}\right]\right\rangle-\frac{2\langle x\rangle}{m}\left\langle\left[\widehat{p}, \frac{\widehat{p}^2}{2 m}\right]\right\rangle-\frac{2\langle p\rangle}{m}\left\langle\left[\widehat{x}, \frac{\widehat{p}^2}{2 m}\right]\right\rangle\end{aligned} \]

    应用\([\widehat{A}, \widehat{B} \widehat{C}]=\widehat{B}[\widehat{A}, \widehat{C}]+[\widehat{A}, \widehat{B}] \widehat{C},[\widehat{A} \widehat{B}, \widehat{C}]=\widehat{A}[\widehat{B}, \widehat{C}]+[\widehat{A}, \widehat{C}] \widehat{B}\)有:

    • \([\widehat x \widehat p +\widehat p \widehat x,\widehat p^2] = 2[\widehat x \widehat p ,\widehat p^2] = \widehat x [\widehat p , \widehat p^2]+[\widehat x, \widehat p^2]\widehat p = 2i\hbar\widehat p^2\)

    \[ \begin{align}i \hbar \frac{\mathrm{d}^2}{\mathrm{~d} t^2} \sigma_x^2=\frac{2 i \hbar}{m^2}\left\langle p^2\right\rangle-\frac{2 i \hbar}{m^2}\langle p\rangle^2=\frac{2 i \hbar}{m^2}\left(\left\langle p^2\right\rangle-\langle p\rangle^2\right)=\frac{2 i \hbar}{m^2} \sigma_p^2\end{align} \]

  • 然后我们尝试对\((2)\)进行两次积分,积分下限取0,上限取t:

\[ \begin{align}\sigma_x^2(t)=\frac{\sigma_p^2}{m^2} t^2+\frac{\mathrm{d} \sigma_{x 0}^2}{\mathrm{~d} t} t+\sigma_{x 0}^2\end{align} \]

进一步探究\(\sigma_x(t)\)

  • 我们使用之前的方法来计算\(\langle x p+p x\rangle_0\)

    \[ \langle x p+p x\rangle_0=\int_{-\infty}^{+\infty} \psi^{*}(x)(\widehat{x} \widehat{p}+\widehat{p} \widehat{x}) \psi(x) \mathrm{d} x \]

    注意这里与之前计算的不同在于将原本的左右矢的计算转化为了积分计算。这个等式与\(\langle A\rangle_\psi=\langle\psi|\widehat{A}| \psi\rangle\)等价。且由于\(\psi\)为实数,可以省略共轭。

    展开\(\widehat p = -i\hbar\frac {\partial}{\partial x}\),得:

    \[ \begin{aligned}\langle x p+p x\rangle_0 & =\int_{-\infty}^{+\infty} \psi(x)\left(x\left(-i \hbar \psi^{\prime}(x)\right)-i \hbar(x \psi(x))^{\prime}\right) \mathrm{d} x \\ & =-i \hbar \int_{-\infty}^{+\infty}\left(\psi(x) x \psi^{\prime}(x)+\psi^2(x)+\psi(x) x \psi^{\prime}(x)\right) \mathrm{d} x \\ & =-i \hbar \int_{-\infty}^{+\infty}\left(\psi^2(x)+2 \psi(x) x \psi^{\prime}(x)\right) \mathrm{d} x=-i \hbar \int_{-\infty}^{+\infty}\left(x \psi^2(x)\right)^{\prime} \mathrm{d} x \end{aligned} \]

    由于\(\psi(x, t=0)\)为实数,\(\langle x p+p x\rangle_0\)为纯虚数。然而显而易见的是\((\widehat{x} \widehat{p}+\widehat{p} \widehat{x})^{\dagger}=\widehat{p}^{\dagger} \widehat{x}^{\dagger}+\widehat{x}^{\dagger} \widehat{p}^{\dagger}=\widehat{p} \widehat{x}+\widehat{x} \widehat{p}\),这意味着\(\widehat{p} \widehat{x}+\widehat{x} \widehat{p}\)是厄米的,即\(\langle x p+p x\rangle_0\)为实数。因此:

    \[ \langle x p+p x\rangle_0=0 \]

  • 相同的方法我们处理\(\langle p\rangle_0\)

    \[ \begin{aligned}\langle p\rangle_0 & =\int_{-\infty}^{+\infty} \psi(x) \widehat{p} \psi(x) \mathrm{d} x=\int_{-\infty}^{+\infty} \psi(x)\left(-i \hbar \psi^{\prime}(x)\right) \mathrm{d} x=-i \hbar \int_{-\infty}^{+\infty} \psi(x) \psi^{\prime}(x) \mathrm{d} x \\& =-\frac{i \hbar}{2} \int_{-\infty}^{+\infty}\left(\psi^2(x)\right)^{\prime} \mathrm{d} x\end{aligned} \]

    因为算符\(\widehat p\)是厄米的,我们可以得到\(\langle p\rangle_0=0\)

  • 在前一部分中我们计算得到了:

    \[ i \hbar \frac{\mathrm{d}}{\mathrm{d} t} \sigma_x^2=\frac{i \hbar}{m}(\langle x p+p x\rangle-2\langle x\rangle\langle p\rangle) \]

    带入即可获得:

    \[ \left.\frac{\mathrm{d}}{\mathrm{d} t} \sigma_x^2\right|_{t=0}=\frac{1}{m}\left(\langle x p+p x\rangle_0-2\langle x\rangle_0\langle p\rangle_0\right)=0 \]

  • 由此,我们可以得知\((3)\)的第二项为0:

    \[ \begin{align}\sigma_x(t)=\sqrt{\frac{\sigma_p^2}{m^2} t^2+\sigma_{x 0}^2}\end{align} \]

    \(\sigma_p\)\(\sigma_{x0}\)都是常数。

    然后,我们可以注意到,\(\sigma_x(t)\)是一个增函数,所以在\(t = 0\)时取最小值,又根据海森堡不确定性原理,有:

    \[ \sigma_x(t) \sigma_p(t) \geqslant \frac{\hbar}{2} \]

    因此我们可以假设\(\sigma_{x 0} \sigma_p \approx \frac{\hbar}{2}\)\((4)\)在这种假设可以写作:

    \[ \begin{align}\sigma_x(t)=\sqrt{\frac{\hbar^2}{\sigma_{x0}^24m^2} t^2+\sigma_{x 0}^2} \end{align} \]

定域性

根据\((5)\),我们可以研究在这个假设下,影响粒子定域性的因素。定域性可以由以下式子判断:

\[ \sqrt{\sigma_x^2(t)-\sigma_{x 0}^2}=\frac{\sigma_p}{m} t=\frac{\hbar}{2 m \sigma_{x 0}} t \]

可见,粒子定域性与质量和初始位置不确定度分别呈反比。这个结论与德布罗意波长相似。