TD 3:模式频率,模式频率间隔,有折射率导致的能量衰减,高斯光束

  • \(\nu_m = m(\frac{c}{2nL})\)
  • \(\Delta \nu_c = \frac{c}{2nL} = 8.54\times10^8s^{-1}\)
  • \(m = \frac 1T\frac 1{\Delta\nu_c} = \frac {c}{\lambda}\frac 1{\Delta\nu_c} = 329929.5\approx 329930\)
  • \(\nu_m = 329930\Delta\nu_c =2.818\times10^{14}Hz\)

  • \(Q = mF = m\frac{\pi\sqrt{R_e}}{1-R_e}\)
  • \(R_e = \sqrt{R_1R_2}e^{-\alpha L}\)

接下来从复折射率转换到吸收系数\(\alpha\)

  • 复折射率:\(\widetilde w = n-i\kappa\)
  • 考虑电场:\(\vec E = E_0e^{i(\omega t-kz)} = E_0e^{i(\omega t-\frac \omega cn z)}e^{-\frac \omega c \kappa z}\vec e_z\)
  • 能量强度:\(I = |E_0|^2e^{-\frac {2\omega \kappa z}{c}}\)
  • 得到:\(\alpha = \frac{2\omega\kappa}{c} = \frac{4\pi\kappa}{\lambda} = 0.0118\)

继续计算:

  • \(R_e = 0.995\cdot e^{-\frac{4\pi\kappa L}{\lambda}} = 0.9938,\ \ Q = 1.67\times 10^{8}\)
  • \(\tau_c = \frac{Q}{\omega}= \frac{Q\lambda}{c2\pi} = 9.444\times10^{-8}s\)

  • 高斯光束:\(I = I_0e^{-a(\nu-\nu_0)^2}\)
  • 计算\(a\)\(\Delta\nu\)的关系:在\(\nu_0\pm\frac{\Delta\nu}2\)的范围内,光强等于\(I_0\frac 1{e^2}\):

\[ I_0e^{-a\frac{\Delta\nu^2}{4}} = I_0\frac 1{e^2}\Rightarrow a = \frac{8}{\Delta\nu^2} \]

  • 已知\(\Delta \lambda\),考虑\(\Delta \nu\)\(\Delta \lambda\)的关系:

\[ \nu = c/\lambda\Rightarrow\Delta\nu = \frac c{\lambda^2}\Delta\lambda = \frac{c}{(1.064\times10^{-6})^2}0.1\times10^{-10} = 2.65GHz \]

  • 注意这里\(Å\)代表埃米,是\(10^{-10}m\)
  • 计算模式间距\(\Delta\nu_c\)\(\nu = m\times\Delta\nu_c\)
  • 注意区分模式间距和光束宽度
  • 光强表达式转换为:

\[ I = I_0e^{-8(\frac{\Delta\nu_c}{\Delta\nu})(m-m_{\nu_0})^2} > I_0\frac 1{e^2}\Rightarrow-8(\frac{\Delta\nu_c}{\Delta\nu})^2(m-m_{\nu_0}) \ge -2 \]

  • 得到可选模数:\(329886,329887,329888\)
  • 反推频率

  • 损耗导致的峰变宽:\(\Delta\nu_m = \frac {\Delta \nu_c}F\)
  • 最后考虑到激光的偏振状态,最终模数为\(2\times3 = 6\)