TD2:光栅,傅里叶光学
TD2:光栅,傅里叶光学
- 假设光栅是无限长的,周期为p,单个周期的通过长度为a,【光栅到屏幕的距离可以视为镜二的焦距的二倍】计算屏幕上的强度分布:
通过光栅的光可以视为:\(f(x) = Rect(\frac x a)\otimes \sum\delta(x-np)\)
其傅里叶变换为:\(\widehat f(k_x) = asinc(ak_x)\cdot\frac 1 p \sum \delta(k_x-\frac n p)\)
转换到屏幕所在面坐标:\(c \widehat f(x') = asinc(a\frac{x'}{2\lambda f_2})\cdot\frac 1 p \sum \delta(\frac{x'}{2\lambda f_2}-\frac n p)\)
由于强度分布正比于傅里叶变换,存在k,使得:
\[ A_p = kasinc(a\frac{x'}{2\lambda f_2})\cdot\frac 1 p \sum \delta(\frac{x'}{2\lambda f_2}-\frac n p) \]
公式中n代表模态,比如第零模态出现在\(x' = 0\),之后 每个模态之间差\(\frac{2\lambda f}{p}\)
- 屏幕总长度为L = 28.7nm,总像素数3648个
- 研究其能显示的波长范围和最小波长分辨率
- 波长范围跟L相关,对于第一级,\(x' = \frac{2\lambda f_2}{p}\),求\(L= \frac{2\Delta\lambda f_2}{p}\Rightarrow\Delta\lambda = \frac{Lp}{2f_2} = 7034.3nm\)
- 最小分辨率:\(\frac{\Delta\lambda}{3648} = 1.93nm\)
- 考虑光栅长度为d = 20mm,计算新的强度分布:
在这种情况下,\(f(x) = Rect(\frac x d) \cdot[ Rect(\frac x a)\otimes \sum\delta(x-np)]\)
计算傅里叶变换之后:\(\widehat f(k_x) = dsinc(dk_x) \otimes [asinc(ak_x)\cdot\frac 1 p \sum \delta(k_x-\frac n p)]\)
\[ A_p = kdsinc(d\frac{x'}{2\lambda f_2}) \otimes [asinc(a\frac{x'}{2\lambda f_2})\cdot\frac 1 p \sum \delta(\frac{x'}{2\lambda f_2}-\frac n p)] \]
此时的条纹总宽度:\(\frac{4\lambda f_2}{d}\), \(\Delta x' = \frac{2\lambda f_2}{d} = 3.4\mu m\)
注意,\(sinc(\pm 1) = 0\),这对应着条纹宽度
而屏幕的长度分辨率:\(\Delta x = \frac {28.7}{3648} = 7.87\mu m > \Delta x'\)
所以,考虑光栅宽度导致的展宽提升并不会反映在屏幕上
- 由光源本身宽度导致的展宽提升体现在x的偏移上,例如在\(x_{optique,0} = 5\mu
m\)时,经过两个透镜的放大,最终体现在屏幕上:
- \(\Delta x'_0 = \frac {x_{optique,0}}{42}\times68 = 8.1\mu m\)
- 最终的展宽:\(\Delta x_{final} = 2\Delta x'_o+\Delta x' = 19.6\mu m>7.87\mu m\)