TD 1: Poynting矢量,电场磁场结构关系,有效值之间的转化,偏振,波包

原始的TD1在勤经苦舟笔记的5的后边,整理后的笔记在笔记6的相应模块的第二部分

第一题:Poynting矢量,电场磁场结构关系,有效值之间的转化

  • 在地球所在的位置,太阳的总辐射面积:$S= 4\pi r^2 = 2.83\times10^{23} m^{2}$
  • 光照强度或者说Poynting矢量:$\Pi = P/S = 1.414 kW\cdot m^{-2}$
  • 有:$\Pi = \frac{\vec{E}\land\vec B}{\mu_0}$,且根据结构关系:$\vec B = \frac {\vec k \land \vec E}{\omega} = \frac{\vec n\land\vec E}{c}$
  • 得到:$\Pi = \frac{\vec E \land (\vec n \land \vec E)}{c\mu_0} = \frac{\vec n(\vec E \cdot \vec E)-\vec E(\vec E\cdot\vec n)}{c\mu_0} =\frac{\vec E^2\vec n}{c\mu_0}$
  • 我们得到的辐射强度是有效值 $<\vec \Pi> = <\frac{\vec E^2\vec n}{c\mu_0} > = \frac{1}{2c\mu_0}{|E_0|^2}$
  • 同理,我们需要得到电场强度的有效值 $<\vec E> = \frac {\sqrt{2}} 2 |E_0| = 729.8V/m[739V/m]$
  • 根据结构关系,磁场的有效值:$<\vec B> = \frac{\vec E} c = 2.43\times10^{-6}T$

第二题:偏振,三维平面波,同上

  • $\vec n = (\frac 12 , \frac {\sqrt{3}} 2,0), \quad \vec E = (0,0,E_{0z}cos(\omega t-k\vec n\vec r))$
  • $\vec k = \vec n \frac {2\pi}{\lambda}, \quad \vec B = \frac{\vec n \land \vec E}{c} = (\frac{\sqrt{3}}2E{0z}cos(\omega t-k\vec n\vec r), -\frac 12E{0z}cos(\omega t-k\vec n\vec r),0)$
  • $\vec \Pi = \frac{\vec E \land \vec B}{\mu_0} = \frac{\vec E^2 \vec n}{\mu_0c} = \epsilon_0c(\frac 12E_0^2cos^2(…),\frac {\sqrt{3}}2E_0^2cos^2(…),0)$
  • 计算部分与第一题相同

第三题:波包

1. $f(x,t) = cos(2\pi\nu_0t-kx)Rect(t/\Delta \tau)$

  • $g(\nu) =$ $\frac{\delta(\nu-\nu_0)+\delta(\nu+\nu_0)}{2} \otimes \Delta \tau sinc(2\pi\Delta\tau\nu)$
  • $g(\nu)_{\nu>0} = \Delta \tau sinc(\pi\Delta\tau(\nu-\nu_0))$ 这里矩形的长度变为之前的1/2,所以要消去2
  • $\Delta\nu = 1/\Delta\tau$

2. $f(x,t) = cos(2\pi\nu_0t-kx)exp(-t/\tau)$

  • $g(\nu) = \frac{\delta(\nu-\nu_0)+\delta(\nu+\nu_0)}{2} \otimes \frac{\tau/2}{1+2i\pi\nu\tau}$
  • $g(\nu)_{\nu>0} = \frac{\Delta\tau/2}{1+2i\pi(\nu-\nu_0)\Delta\tau}$
  • $g(\nu_0+\Delta \tau/2) = \frac{\Delta \tau/2}{1+i\pi} = \sqrt{2}g(\nu_0)$注意是要平方后呈现二倍关系