Cours 2 傅里叶光学,电磁学基础,波导

傅里叶光学

散射

  • 关于傅里叶变换到频率还是角频率:

\[ \frac{2\pi}{p}\sum\delta(k_x-m\frac{2\pi}{p}) = \frac{2\pi}{p}\sum\delta(2\pi \sigma_x-m\frac{2\pi}{p}) = \frac{2\pi}{|2\pi|p}\sum\delta( \sigma_x-m\frac{1}{p}) = \frac{1}{p}\sum\delta( \sigma_x-m\frac{1}{p}) \]

  • 注意,傅里叶变换完之后的结果是\(K_x\)\(K_y\),我们要将其转换为坐标\(\xi,\eta\)转换公式:

\[ K_x = k\frac {\xi} z = \frac {2\pi\xi} {\lambda z}\\K_y = k\frac \eta z = \frac {2\pi\eta} {\lambda z} \]

电磁学基础

真空中

结构关系

  • \(\vec B = \frac{\vec k \land \vec E}{\omega}\)

色散关系relation de dispersion

  • \(k = \frac{\omega}{c}\)

能量关系

  • \(\frac{du}{dt} + div(\vec S) = 0\)
  • 能量:\(u = \epsilon_0\frac{\vec E^2}{2}+\frac{\vec B}{2\mu_0}\)
  • Poynting矢量:\(\vec S = \frac{\vec E \land \vec B}{\mu_0}\)

介质中

色散关系

  • \(\vec k^2 = \frac{\omega^2}{c^2}\widetilde\epsilon\mu \Rightarrow k = \frac \omega c \widetilde n\)

吸收和色散

  • \(\vec E = \vec E_0 exp(-\frac{\omega \kappa}{c})exp(i\omega(t-\frac{n}{c}z)), n = Re(\widetilde n), \kappa = Im(\widetilde n)\)

穿透深度 Profondeur de pénétration

  • \(\delta = \frac c {\omega\kappa} = \frac{\lambda}{2\pi\kappa}\)

衰减效率 Coefficient d’atténuation

  • \(\alpha = 2\frac{\omega\kappa}c = \frac{4\pi\kappa}\lambda\)

波导

导向模式

模态

  • \(AC-AB = 2dsin(\theta)\Rightarrow sin(\theta_m) = m\frac{\lambda}{2d}\)
  • m被称为模态modes
  • 第m模态的频率:\(\nu_m = m\frac{c}{2d}\)

纵向守恒

对于同一模态,波矢的y方向分量为常数:\(k_y = k_y(m)\)

\[ k_{ym} = m\frac \pi d \]

\[ \beta_m^2 = k^2-\frac{m^2\pi^2}{d^2} \Leftrightarrow k^2 = \beta^2+k_y^{2} \]

模态数量

设M为最大可允许的模态数量,根据\(sin(\theta_m) = m\frac{\lambda}{2d}\),有:

\[ M = E(\frac{2d}{\lambda}) = E(\nu\frac{2d}{c}) \]

  • \(\lambda\)的最大值(\(M= 0\))longueur d ’onde de coupure du guide\(\lambda_{max} = 2d\)
  • \(\nu\)的最小值fréquence de coupure:\(\nu_{min} = \Delta\nu = \frac c{2d}\)
  • 单模态条件: \(d\le\lambda\le2d\)

波导横向场分布

色散关系

  • \(\beta^2_{m} = k^2-\frac{m^2\pi^2}{d^2} = \frac{\omega^2}{c^2}-\frac{m^2\pi^2}{d^2}\)

群速度

  • \(v_{gm} = \frac{d\omega}{d\beta_m} = c^2\frac {\beta_m} \omega = \frac{c^2k}{\omega}cos\theta_m = c\cdot\cos\theta_m\)

二维波导

模态数量

\[ M\thickapprox2\times\frac{\frac \pi 4(nk_0)^2}{\frac{\pi}{d}^2} = \frac \pi 2(\frac{2d}{\lambda})^2 \]

Résumé